Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles

نویسندگان

  • Franziska Decker
  • David Oriola
  • Benjamin Dalton
  • Jan Brugués
چکیده

Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autocatalytic microtubule nucleation determines the size and mass of spindles

Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation (1, 2). Previous evidence suggests that microtubules nucleate throughout the spindle structure (3-5). However, the mechanisms underlyin...

متن کامل

Poleward transport of Eg5 by dynein–dynactin in Xenopus laevis egg extract spindles

Molecular motors are required for spindle assembly and maintenance during cell division. How motors move and interact inside spindles is unknown. Using photoactivation and photobleaching, we measure mitotic motor movement inside a dynamic spindle. We find that dynein-dynactin transports the essential motor Eg5 toward the spindle poles in Xenopus laevis egg extract spindles, revealing a direct i...

متن کامل

The kinesin Eg5 drives poleward microtubule flux in Xenopus laevis egg extract spindles

Although mitotic and meiotic spindles maintain a steady-state length during metaphase, their antiparallel microtubules slide toward spindle poles at a constant rate. This "poleward flux" of microtubules occurs in many organisms and may provide part of the force for chromosome segregation. We use quantitative image analysis to examine the role of the kinesin Eg5 in poleward flux in metaphase Xen...

متن کامل

Xenopus tropicalis egg extracts provide insight into scaling of the mitotic spindle

The African clawed frog Xenopus laevis has been instrumental to investigations of both development and cell biology, but the utility of this model organism for genetic and proteomic studies is limited by its long generation time and unsequenced pseudotetraploid genome. Xenopus tropicalis, which is a small, faster-breeding relative of X. laevis, has recently been adopted for research in developm...

متن کامل

Fast Microtubule Dynamics in Meiotic Spindles Measured by Single Molecule Imaging: Evidence That the Spindle Environment Does Not Stabilize Microtubules

Metaphase spindles are steady-state ensembles of microtubules that turn over rapidly and slide poleward in some systems. Since the discovery of dynamic instability in the mid-1980s, models for spindle morphogenesis have proposed that microtubules are stabilized by the spindle environment. We used single molecule imaging to measure tubulin turnover in spindles, and nonspindle assemblies, in Xeno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2018